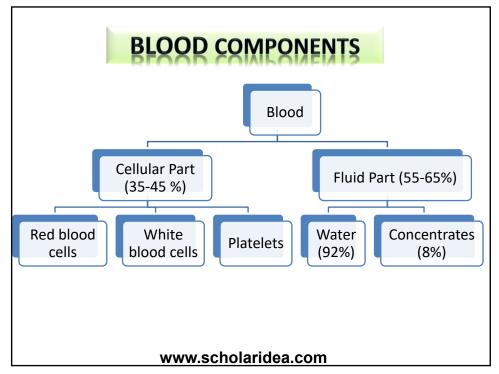
HEMATOLOGY I- Blood picture (Complete blood count)

By

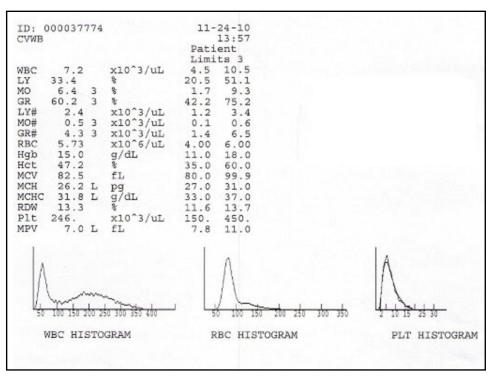
Prof. Mahmoud Rushdi Assiut University Egypt


www.scholaridea.com

1

Hematology may be defined as the scientific study of the structure and function of the blood in health and disease. Hematology therefore is a laboratory science in which we quantitatively and qualitatively observe the different components of blood in order to diagnose a great variety of diseases.

2


www.scholaridea.com

Blood Picture Complete Blood Count (CBC) Hemogram

www.scholaridea.com

	Component	Your Value	Standard Range	Units	Flag
	White Blood Cell Count	5.4	4.0 - 11.0	K/uL	
	Red Blood Cell Count	5.20	4.40 - 6.00	M/uL	
	Hemoglobin	16.0	13.5 - 18.0	g/dL	
	Hematocrit	47.2	40.0 - 52.0	%	
	MCV	91	80 - 100	fL	
	MCH	30.8	27.0 - 33.0	pg	
	MCHC	33.9	31.0 - 36.0	g/dL	
	RDW	12.7	<16.4 -	%	
	Platelet Count	149	150 - 400	K/uL	L
	Differential Type	Automated			
	Neutrophil %	56	49.0 - 74.0	%	
	Lymphocyte %	23	26.0 - 46.0	%	L
	Monocyte %	13	2.0 - 12.0	%	Н
	Eosinophil %	7	0.0 - 5.0	%	Н
	Basophil %	1	0.0 - 2.0	%	
	Abs. Neutrophil	3.1	2.0 - 8.0	K/uL	
	Abs. Lymphocyte	1.2	1.0 - 5.1	K/uL	
	Abs. Monocyte	0.7	0.0 - 0.8	K/uL	
	Abs. Eosinophil	0.4	0.0 - 0.5	K/uL	
5	Abs. Basophil	0.0	0.0 - 0.2	K/uL	

Evaluation of the red blood cells (RBCs) Erythrocytes picture

Erythrocytes morphology

RBCs count

Mean corpuscular values

Packed cell volume

Hemoglobin concentration

www.scholaridea.com

7

Evaluation of the White blood cells (RBCs) WBCs picture

Total WBCs count

Differential leucocytes count

8

www.scholaridea.com

Evaluation of Platelets (RBCs) Platelets picture

Platelets (Thrombocytes) count Mean platelet volume (MPV) Plateletcrit (PCT) Platelet distribution width (PDW)

www.scholaridea.com

9

Blood Picture Complete blood count (CBC)

RBCs count (/mm³ or T/I)

Hemoglobin concentration (g/dl or g/l)

Packed cell volume (PCV) or Hematocrit (%)

Erythrocytes morphology

Determination of Mean corpuscular values (MCV, MCH, MCHC)

Total WBCs count (/mm³ or G/I)

Differential leucocytes count

Platelets (Thrombocytes) count (/mm³)

10

www.scholaridea.com

Evaluation of the red blood cells (Erythrocyte picture)

11

www.scholaridea.com

11

Test description	Observed value	Unit	Reference range
Erythrocytes			_
Total count	4.21	$\times 10^6/\mu L$	3.8-5.4
Hemoglobin	9.6	g/dL	10.5-14.0
PCV (hematocrit)	30.1	%	32-42
MCV	71.5	fL	72-88
MCH	22.8	pg	24-30
MCHC	31.9	g/dL	32–36
Leucocytes			
Total leucocyte count	11,700	%	4400-11,300
Neutrophils	31	%	45-74
Lymphocytes	66	%	22-50
Basophils	00	%	0-1
Eosinophils	02	%	0-4
Monocytes	01	%	1-8
Platelets			
Total count	840	$\times 10^3/\mu L$	10-400
MPV	7.7	fL	8-12
PDW	8.8	fL	9-14

Types of blood samples

Sample

Whole blood ————— Blood +

Whole blood — Blood + Anticoagulant

Serum Sample Blood without Anticoagulant

Plasma Sample Whole blood

Blood smear — Whole blood or drop of blood

www.scholaridea.com

13

Anticoagulants

Ethylene Diamine Tetra-acetic acid (EDTA)

Dose: 1mg/ml blood

Mode: Binding ionized

calcium

Advantages:

- √ Hematological analysis.
- ✓ No effect on leukocyte staining affinity.
- ✓ Preserve the blood sample for 24 hours.

Disadvantage

Higher concentration of salt withdraws water from red cells and reduces PCV values.

www.scholaridea.com

Causes of specimen spoilage

Haemolysis

It means the breakdown of the RBCs.

- Using wet needle or syringe.
- Collection of the blood sample directly to the bottom of the tube.
- Vigorous mixing of the blood sample.
- Excessive negative pressure when collecting sample with a syringe will rupture cells and collapse the vein.
- Failure to remove the needle from the syringe, when transferring blood from a syringe to a container.
- Extreme heat or cold.

www.scholaridea.com

15

Causes of specimen spoilage

Clotting of blood samples

It means formation of clots in the whole blood sample.

- Delay in mixing the blood sample with the anticoagulant.
- The amount of the collected blood sample is larger than the concentration of the anticoagulant.
- Taking long time in collection of the blood sample.

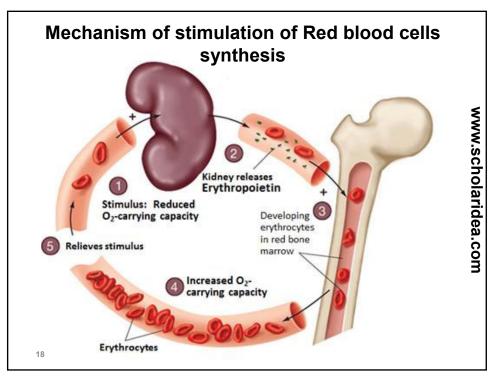
www.scholaridea.com

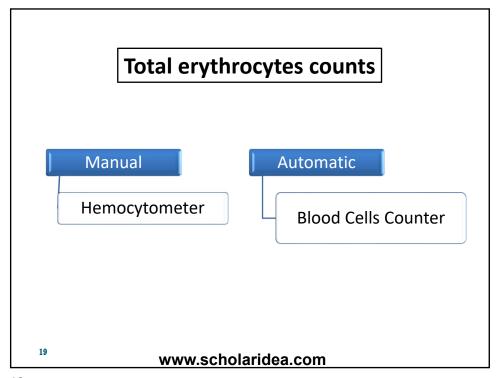
Evaluation of the red blood cells (RBCs) Erythrocytes picture

Determination of RBCs count (/mm³ or T/I)

Determination of Hemoglobin concentration (g/dl)

Determination of Packed cell volume (%)

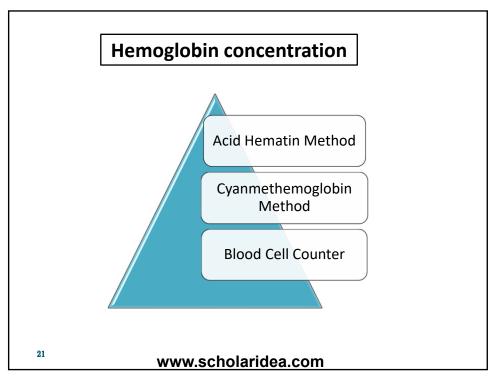

Determination of Mean corpuscular values (MCV, MCH, MCHC)


Determination of erythrocytes morphology

17

www.scholaridea.com

17



Physiological Factors affecting the RBCs count:

- Exercise
- · High altitude
- Excitement and Stress
- Age
- Sex
- High Environmental Temperature
- After Meals
- Pregnancy

www.scholaridea.com

Hemoglobin concentration

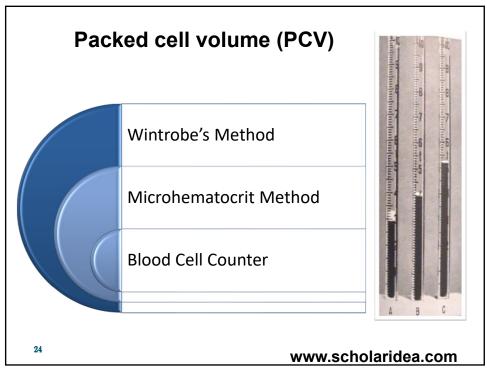
Increase haemoglobin concentration

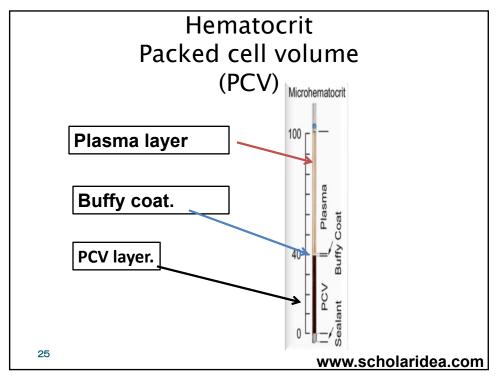
- Chronic carbon monoxide poisoning.
- ❖ Polycythemia.
- **❖** Cardiac diseases.
- ❖ Pulmonary diseases.

Decrease hemoglobin concentration

- ❖Anemia.
- ❖Amyloid nephrosis.
- ❖ Leukaemia.
- ❖ Malignant tumors.

22


www.scholaridea.com


Hematocrit Packed cell volume (PCV)

Packed cell volume (PCV) or Hematocrit, is defined as the percentage of blood occupied by RBCs, or simply you can define PCV as the percentage of RBCS in whole blood.

www.scholaridea.com

23

Packed cell volume (PCV)

Advantages of the microhematocrit method:

- The amount of blood required is considerably less.
- Time required for the entire procedure is less.
- accurate.

Disadvantages of the microhematocrit method

- Special reader is required for reading.
- It is impossible to determine E.S.R. in such small tubes.
- It is difficult to evaluate the depth of the buffy coat.

26

www.scholaridea.com

Packed cell volume (PCV)

Interpretation of packed cells volume a. PCV layer

An elevated PCV layer occurs in cases of:

- 1- Physiological causes.
- 2- Hemoconcentration following dehydration.
- 3- Chronic obstructive pulmonary disease.
- 4- Pulmonary diseases that associated with hypoxia.
- 5- Congestive heart failure.
- 6- Polycythemia

27

www.scholaridea.com

27

Interpretation of packed cells volume

Lowered PCV layer occurs in cases of:

- Oligocythemia (Erythrocytopenia).
- Hemodilution.
- Renal failure, as a result of decreased secretion of erythropoietin.
- Malignant tumors.
- Leukemia.

28

www.scholaridea.com

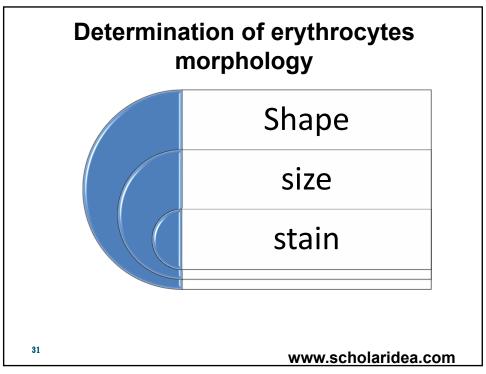
2. Buffy coat

In blood from normal animal, the buffy coat consists of a white to gray layer 0.5 to 1.2 mm. In size occurring immediately above the PCV layer. For routine clinical application, a buffy coat of less than 0.5 mm would suggest leucopenia, while above 1.5 mm indicate Leucocytosis

29

www.scholaridea.com

29


3. Plasma layer

The color of the plasma can help with:

- a) Dark yellow color is an indicator for hemolytic, hepatic and obstructive jaundice.
- b) The pink color of plasma is indicative for hemolysis of erythrocytes, which associate some diseases as bacillary hemoglobinuria and blood parasites as Babesia species.
- c) Milky color of plasma indicates the increase of lipids in blood.

30

www.scholaridea.com

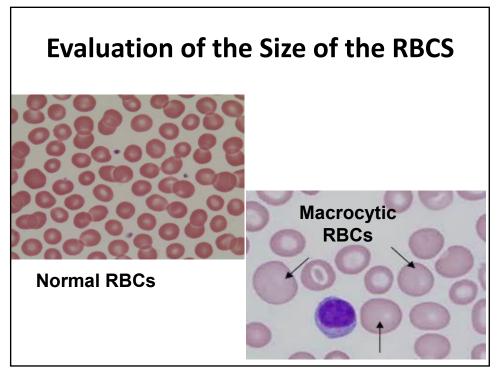
Morphological examination of erythrocytes

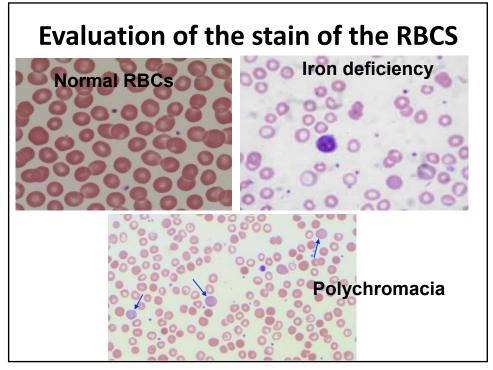
All parameters of the erythrocyte picture can be determined using a blood cell counter, except assessing the morphology of the RBCs, which must be evaluated using a blood smear. This means, that both electronic blood cell count and blood smear are required to perform the erythrocyte picture.

www.scholaridea.com

Morphological examination of erythrocytes

Morphological examination of erythrocytes is carried out by:


- Examination of a stained blood film (Giemsa stain) under the light microscope and by using the oil immersion lens (X100), the RBCs are examined for shape, size, and stain.
- Calculating and interpreting the mean corpuscular values (indices).


www.scholaridea.com

33

Evaluating the shape of the RBCs

Mean corpuscular values

1. Mean Corpuscular Volume (MCV)

Mean corpuscular volume (MCV, fl or femitoliter) is a measure of average size of RBC and represents the volume of a single RBC.

This value used to classify red cells as:

- Normocytic red blood cells are of normal size.
- Microcytic red blood cells are smaller than normal.
- Macrocytic red blood cells are larger than normal.

www.scholaridea.com

2. Mean Corpuscular Hemoglobin (MCH)

Mean corpuscular hemoglobin (MCH, pg or pictogram) is average weight hemoglobin of erythrocyte in a population of erythrocytes.

3. Mean Corpuscular Hemoglobin concentation (MCHC)

Mean corpuscular hemoglobin concentration (MCHC, g/dl) is the average percent of hemoglobin occupied by the erythrocyte (g/dl)

39

www.scholaridea.com

39

Mean corpuscular values

1. Mean Corpuscular Volume (MCV)

2. Mean Corpuscular Hemoglobin (MCH)

MCH (pg) =
$$\frac{\text{Hb. g/dl x10}}{\text{RBC count x 10}^6/\text{ul}}$$

3. Mean Corpuscular Hemoglobin concentration (MCHC)

MCHC (g/dl) =
$$\frac{\text{Hb. g/dl X100}}{\text{PCV (\%)}}$$

40

www.scholaridea.com

Based on MCH and MCHC red blood cells may be:

- Normochromic red cells with normal Hb concentration.
- Hypochromic red cells with lowered Hb concentration.
- Hyperchromic red cells with elevated Hb concentration.

41

Complete Blood Count:

www.scholaridea.com

(11.5 - 15.0)

(150-450)

41

	Patient Value	Normal Range 2 years – 6 years
WBC	8.4 x 10 ⁹ / L	(5.0 - 17.0)
RBC	2.77 x 10 ¹² / L	(3.90 - 5.30)
Hgb	7.5 g/dl	(11.5 - 13.5)
Hct	21.8 %	(34.0 - 40.0)
MCV	78.6 fl	(75.0 - 87.0)
MCH	26.9 pg	(25.0 - 31.0)
MCHC	34.2 gm/dl	(31.0 - 36.0)

17.3 %

192 x 10⁹ / L

42

RDW

PLT

Handouts of the Lecture is available on

https://scholaridea.com/category/medical-laboratory-handouts/

The Video of the Lecture is Available on

Scholar Idea Channel on YouTube