Practical trainings, student assistants and theses positions in Helmholtz-Zentrum Dresden Rossendorf, Germany, a Dresden-based research laboratory. It conducts research in three of the Helmholtz Association’s

Geometric characterization of wire mesh mist eliminators (Id 358)

Student practical training / Bachelor theses / Master theses / Diploma theses / Student Assistant / Compulsory internship / Volunteer internship

Foto: Mist eliminator in distillation columns ©Copyright: Alexander DößThermal separation processes (e.g. distillation) are key basic operations in process engineering plants. The mass transfer is thus dependent on intensive counterflow interaction between the vapor and the liquid. The resulting turbulent flow causes droplets to be torn from the liquid phase by the vapor phase. This reduces the separation efficiency (energy efficiency and product quality) of the process. Simultaneously, droplets carried over to downstream equipment lead to corrosion, polymerization or fouling and increase component maintenance requirements.
For this reason, wire mesh mist eliminators are frequently used in practice. These separate entrained droplets as they pass through the close-meshed wire mesh. Characterization of their separation efficiency, capacity and pressure drop are essential for design and application. The focus of the work is the experimental determination and mathematical description of the pressure drop for knitted wire mesh separators as a function of their geometric properties.

Department: Experimental Thermal Fluid Dynamics

Contact: Döß, Alexander

Requirements

  • Background in process engineering, chemical engineering, mechanical engineering or related disciplines.
  • Interest in experimental work
  • Independent and result-oriented working
  • Safe handling of MS Office software
  • Confident knowledge of German or English language

Conditions

  • Work in a multidisciplinary team
  • Remuneration according to HZDR-internal tariff
  • Scientific excellence and extensive opportunities for professional networking
  • Start from November 2022 or earlier

Online application

Please apply online: english / german

Druckversion


Numerical simulation of particles in rising gas bubbles (Id 356)

Student practical training

The separation of aerosol particles by a moving gas-liquid fluidic interface is central to a wide variety of industrial and natural applications, among which stand out air purification systems and precipitation scavenging. The particle size significantly affects the separation rate. The diffusion of particles in the nanometer range is largely dominated by molecular diffusion. In this regime, predictive models accurately estimate the separation rates. Model inaccuracy increases, however, significantly when the particle size ranges from 0.1 μm to 2.5 μm. In this impaction-dominated regime, the complex interplay between the flow dynamics on both sides of the fluidic interface and the particle inertia makes it difficult to develop suitable models.
In this work, the student will numerically investigate whether enforcing bubble deformation into a non-spherical shape leads to a higher deposition rate, hereby making the particle separation process more efficient. The results will lead to the development of an improved and reliable separation model accounting for the deformation of the fluidic interface and the associated flow changes.

Department: Experimental Thermal Fluid Dynamics

Contact: Maestri, RhandreyDr. Lecrivain, Gregory

Requirements

  • General interest in fluid mechanics
  • Preliminary experience in code development (C++) is desirable
  • Good written and oral communication skills in either English or German

Conditions

  • Either an immediate start or a start in 2022 is possible
  • Duration of the internship is anticipated to be 6 months but can be modified according to study regulations
  • Remuneration according to HZDR internal regulations

Online application

Please apply online: english / german

Druckversion


Sulphide recovery from the tailings of a porphyry copper deposit (Id 355)

Master theses / Diploma theses

The Helmholtz Institute Freiberg (HIF) aims at improving the efficiency of the raw materials value chain. Within the processing department of the institute, we work on further developing separation technologies for the efficient recovery of complex raw materials. Currently, we are faced with the challenge of optimizing the beneficiation of chalcopyrite and rejection of enargite from the tailings of a large porphyry copper deposit.

In this master thesis, you’ll work with design of flotation experiments aiming at the optimization of sulphide recovery from tailings samples. Following, comes the important task of describing the driving phenomena of the flotation process. Here, we are quite flexible in focusing the master thesis on geometallurgy with automated mineralogy and/or analysis of froth images collected throghout the experiments and/or atomic force microscopy for particle surface characterisation. Reach out to us and let’s discuss the project together.

Department: Processing

Contact: Pereira, LucasDr. Rudolph, Martin

Requirements

Wir suchen Studenten (w/m/d) mit einem Hintergrund in Aufbereitung und/oder Mineralogie und/oder Chemie. Noch wichtiger ist die Motivation, in einer internationalen und interdisziplinären Gruppe zu arbeiten und zu versuchen, die Punkte aus verschiedenen Blickwinkeln zu verbinden.

Conditions

As already mentioned, you’ll be part of a young, international and interdisciplinary group. Besides, at the HIF you encounter state-of-the-art technologies for particle separation and characterization.
Place of work: Freiberg
Start by September
Duration according to the respective study regulations

Online application

Please apply online: english / german

Druckversion


Influence of ionomer content on development of separation processes for recycling of water electrolyzers (Id 354)

Bachelor theses / Master theses / Diploma theses

Green hydrogen can be produced by water electrolysis technology, which needs critical raw materials such as platinum and iridium in their cells. Since many countries including Germany target a large scale of green hydrogen production, the development of recycling processes of the component is important for a functional circular economy. Especially development of fine particle separation processes is necessary to reach over 90 % of the recovery.
Among three types of water electrolyzer, the used materials in polymer electrolyte membrane(PEM) have different hydrophobic characteristics. Anodic electrode materials including membrane have hydrophilic surfaces and the materials on the cathode show hydrophobic characteristics. Hence, particles from the water electrolyzer can be separated by their hydrophobicity contrast. However, an ionomer is used as a binder material in the catalysts ink, which consists of a hydrophobic chain and a chain with a hydrophilic sulfonic acid group at the end. The content of the ionomer and the particles might affect their hydrophobicity and it will play an important role in the further development of separation processes. The influence of the ratio of ionomer on carbon support has been studied in terms of morphology and electrochemistry performance but not on their surface properties. The purpose of this work is to investigate the influence of different ionomer contents on the wetting behavior of the components.
In this study, particles with six different ionomer contents from 15 to 40 % will be prepared. Their surface properties can be measured by using analytic particle solvent extraction(APSE), bubble attachment test, and selective agglomeration test with the hydrophobic binder.

Department: Processing

Contact: Dr. Rudolph, MartinDr. Mütze, ThomasAhn, Sohyun

Requirements

Field of study: process engineering, chemical engineering, or a related field
Good communication skills in English
Interest in experimental work
Enjoy scientific and independent work

Conditions

Place of work: Freiberg
Start is possible immediately by agreement
Duration according to the respective study regulations
Scientific excellence and extensive professional networking opportunities.

Online application

Please apply online: english / german

Druckversion


Simulation of future supply of battery raw materials (Li, Co, Ni, Mn, Graphite) (Id 353)

Student Assistant

Foto: Hiwi Batmix ©Copyright: Dr. Max FrenzelWe are looking for motivated, creative, and curious students (f/m/d) to help us in collecting the data on and simulating the future supply of battery raw materials. The aim of our project is to quantify the expected contribution from different primary raw materials to the production of Li-ion batteries (LIBs), up to the year 2050. We are specifically focussing on the following raw materials: Li, Co, Ni, Mn and graphite. We use Monte Carlo simulation techniques to build stochastic year-on-year scenarios of future supply, at the resolution of individual mining projects.
An important part of this project is to research existing exploration and mining projects worldwide, collect the necessary data and create the databases for Li, Ni, Co, Mn and graphite mines, which will then be the input for the Monte Carlo simulations which we conduct using R Studio.

The objective of this student assistant position is to support us in this database compilation step, including the following tasks:

  • Literature research on battery raw material deposits and the corresponding value chain(s)
  • Data collection on existing exploration and mining projects through commercial databases, official reports, company websites and other sources
  • Data preparation and clean-up to ensure consistency of all data entries across the database

If there is interest, we are also open to participation in the data modelling and simulation part of the project. We would also be happy to support an extension of the work into an M.Sc. thesis.

Department: Geometallurgy and Economic Geology

Contact: Dr. Frenzel, MaxBuarque Andrade, Laura

Requirements

  • Studies in geosciences or a related field
  • Good comunication skills in English
  • Experience with the handling of larger datasets and database compilation is desirable
  • Experience in a programming language is desirable but not necessary.

Conditions

  • A vibrant research community in diverse and international work environment
  • Scientific excellence and extensive professional networking opportunities
  • Start from: September 2022
  • Working time: up to 20h / week
  • Initially for 3 months; can be extended to up to 12 months at 20h/week, or longer if working time is less
  • Remuneration according to HZDR internal regulations
  • Application deadline: August 1st, 2022

Online application

Please apply online: english / german

Druckversion


Unterstützung im Rechnungswesen (Id 351)

Student Assistant

Die Abteilung Finanzen, Finanzcontrolling und Drittmittel ist für das Finanzmanagement des Helmholtz-Zentrum Dresden-Rossendorf verantwortlich. Im Bereich Rechnungswesen (Haupt-, Banken-, Debitoren-, Kreditoren- und Anlagenbuchhaltung) wird Ihre Hilfe benötigt.

Ihre Aufgaben:

  • Unterstützung (SAP) bei der Erfassung von Geschäftsvorfällen
  • Unterstützung (SAP) bei der Stammdatenpflege, insbesondere Kreditoren
  • Sonstige Unterstützungstätigkeiten

Department: Finance, Financial Controlling and Third-party Funds

Contact: Hartwig, Patrick

Requirements

  • Begonnenes Studium der Wirtschaftswissenschaften
  • Erste Kenntnisse in den Grundlagen des Rechnungswesens (Buchführung, Kosten- und Leistungsrechnung)
  • Selbstständige und verantwortungsvolle Arbeitsweise

Conditions

  • Arbeitsbeginn ab sofort
  • Mindestens 6 Monate

Wir bieten Ihnen die Möglichkeit, im Studium Erlerntes praxisnah umzusetzen! Es erwarten Sie ein
motiviertes und kollegiales Arbeitsumfeld, tatkräftige Unterstützung bei der Umsetzung Ihrer Aufgaben sowie spannende Einblicke in die finanztechnische Schaltzentrale unseres Forschungsstandortes.

Online application

Please apply online: english / german

Druckversion


Studentische Hilfskraft (w/m/d) Unterstützung bei der Digitalisierung von Bestandsakten (Id 350)

Student Assistant / Research Assistant

Zur Unterstützung unserer Personalabteilung suchen wir ab sofort eine engagierte und verantwortungsbewusste studentische Hilfskraft (w/m/d). Das Team der Personalabteilung bietet eine ganzheitliche Betreuung aller Beschäftigten des Helmholtz-Zentrum Dresden-Rossendorf.

Deine Aufgaben:

  • Unterstützung beim Teilschritt Digitalisierung der Bestandsakten
  • Erstellung von Mitarbeiterlisten nach vorgegebenen Kriterien
  • Zusammenstellen der entsprechenden Akten
  • Verpacken in Kartons
  • Pünktliche Übergabe der Akten an einen externen Dienstleister
  • Kontrolle des vollständigen Aktenrücklaufs
  • Auspacken der Kartons
  • Einsortieren der Aktenrückläufe
  • Stichprobenhafte Kontrolle des digitalisierten Aktenbestands

Department: Personnel Affairs

Contact: Hübner, FranziskaWobst, Daniela

Requirements

  • Du absolvierst dein Studium in den Studiengängen Wirtschaftswissenschaften, Geistes- und Sozialwissenschaften oder vergleichbar
  • Du hast die ersten Semester des Studiums erfolgreich absolviert
  • Du arbeitest gerne im Team und verfügst über eine hohe Einsatzbereitschaft
  • Du kannst dich sowohl in Deutsch als auch in Englisch sehr gut und sicher mündlich und schriftlich ausdrücken
  • Du verfügst über eine gute Auffassungsgabe, wodurch Du schnell in der Lage bist, selbständig zu arbeiten
  • Bisherige Erfahrungen durch Praktika in anderen Unternehmen und/oder HR sowie erste Kenntnisse im SAP HCM runden Dein Profil ab

Conditions

  • ein spannendes Arbeitsumfeld auf einem attraktiven Forschungscampus
  • faire Bezahlung, Flexibilität und Spaß bei deiner Arbeit in einem freundlichen Team
  • maximal 19 Arbeitsstunden pro Woche während der Vorlesungszeit, Aufstockung in der vorlesungsfreien Zeit möglich
  • eine gemeinsame Planung der Arbeitstage zur optimalen Vereinbarkeit von Studium und Praxis
  • einen sehr schönen Arbeitsplatz mitten in der Natur
  • zahlreiche Angebote des betrieblichen Gesundheitsmanagements
  • eine sehr gute Betriebskantine u.v.m.

Online application

Please apply online: english / german

Druckversion


Development of a numerical model for the simulation of aerosol spread (Id 349)

Student practical training / Master theses / Diploma theses / Volunteer internship

As part of the CORAERO joint project (Airborne Transmission of SARS Coronavirus – From Fundamental Science to Efficient Air Cleaning Systems) funded by the Helmholtz Association, we are working on scientific issues relating to the formation of virus-laden aerosols, their thermodynamics and propagation in rooms, as well as strategies and technologies to prevent aerosol-borne infections.

In this context, we are looking for a highly motivated student (f/m/d) to work on the development of numerical models for the simulation of dynamic situations. Ideally, the model should reproduce the spread of exhaled aerosols while a person walks. An immersed boundary method is available in the group and will be further developed.

Institute: Institute of Fluid Dynamics

Contact: Dr. Lecrivain, GregoryCavagnola, Marco Alejandro

Requirements

  • General interest in fluid mechanics
  • Preliminary experience in code development (c++) is desirable
  • Good written and oral communication skills in either English or German

Conditions

  • Either an immediate start or a start in 2023 is possible
  • Duration of the internship is anticipated to be 6 months but can be modified according to study regulations
  • Remuneration according to HZDR internal regulations

Online application

Please apply online: english / german

Druckversion


Virtual Reality GUI for VR Microscopy Tool (Id 348)

Student Assistant

Foto: Microscenery VR volume rendering of life microscopy data ©Copyright: Jan TiemannThe Center for Advanced Systems Understanding (CASUS) is a German-Polish research center for data-intensive digital systems research. CASUS was founded in 2019 in Görlitz and conducts digital interdisciplinary systems research in various fields such as earth systems research, systems biology and materials science.

We are looking for a student assistant programmer (f/m/d) to implement a transfer function editor for virtual reality volume rendering application.

The project is based upon the kotlin framework scenery.

Further tasks could be building a two dimensional transfer function editor, other GUI features or networking components.

The student (f/m/d) should have sufficient English skills to be able to communicate with the team.

Institute: CASUS

Contact: Tiemann, Jan

Requirements

● Bachelor/Master candidate in computer science or a related field

Preferably the student (f/m/d) has prior knowledge in the following topics:

● Kotlin/Java
● (VR) UI design
● Volume Rendering
● working with scene graphs (like in any game engine)

Conditions

● A vibrant research community in an open, diverse, and international work environment.
● Scientific excellence and extensive professional networking opportunities.
● The place of work is Görlitz. (home office is possible)
● Compensation as student researcher (working hours to be determined).

Online application

Please apply online: english / german

Druckversion


Characterizing overflowing froth using ultrasonic reflectometry (Id 347)

Bachelor theses / Master theses / Diploma theses / Compulsory internship

Froth flotation is a widely applied process in the separation of materials. There, the froth phase which consists of foam with particles has a
tremendous impact on the overall process performance. An efficient control in such processes requires suitable measurement systems. However, resulting from the opaque nature of such multiphase systems, on-line monitoring of the froth in industrial settings displays a major challenge and is mostly done by means of optical systems.
As an alternative for froth characterization, the use of acoustic measurements could provide a simple solution. It was observed, that a sound wave which is sent towards the froth/air interface will be reflected and the strength of the reflected signal contains information on the froth composition. This has the potential for advanced measurement systems.
In the next step, a deeper understanding of the relationship between reflected signal strength and the froth composition is required. Additionally, the influence of the froth surface has to be studied in more detail. The work aims at investigating this relationship and the influencing parameters in a laboratory flotation cell. This includes acquisition and processing of ultrasonic signals and parallel optical measurement of the froth’s surface.

Department: Transport processes at interfaces

Contact: Knüpfer, LeonDr. Heitkam, Sascha

Requirements

  • Field of study: process engineering, mechanical engineering, or similar focus in chemistry or physics
  • Interest in experimental work
  • Experience with data processing using python is beneficial

Conditions

  • Work in multidisciplinary and international environment
  • Compensation as for HZDR conditions
  • Duration: at least 3 months

Online application

Please apply online: english / german

Druckversion


Calculation of multi-phase flow using the GENTOP model with FLUENT (Id 346)

Student practical training / Master theses / Diploma theses

Foto: Fig. 1: Boiling pipe flow (left: disperse gas volume fraction, right: continuous gas volume fraction) from Setoodeh et al., Applied Thermal Engineering 204 (2022) 117962 ©Copyright: Dr. Thomas HöhneAs a member of the Helmholtz Association of German Research Centers, the HZDR employs about 1,400 people. The Center’s focus is on interdisciplinary research in the areas energy, health and matter. The Institute of Fluid Dynamics is conducting basic and applied research in the fields of thermo-fluid dynamics and magnetohydrodynamics in order to improve the sustainability, the energy efficiency and the safety of industrial processes.

Multiphase flows are important part of many industrial applications, whereas modelling of them is a challenging and complex task. For flow situations with higher void fractions, HZDR developed a new generalized concept for the CFD-simulations including flow regime transitions. The GENTOP (Generalized Two-Phase Flow) approach is able to simulate co-existing large-scaled (continuous) and small-scaled (polydispersed) structures (Fig. 1). Previous results were performed with the CFD code CFX and compared against DEBORA validation data.

The goal of the thesis would be to apply and improving the existing state of the simulations in the Fluent GENTOP framework.

We offer an interesting task dealing with complex physical phenomena, work in an international team using state-of-the-art calculation and programming methods.

We are looking for a motivated student (f/m/d) (master thesis) able to perform CFD simulations, understand and program code to generalize/parametrize CFD simulations, work with experimental data sets, document and present the work in an appropriate manner. Useful but not required is a knowledge of the following software tools: CFD codes CFX and Fluent, Python, GIT.

The task is supervised by Framatome and HZDR.

FRAMATOME is a designer and supplier of nuclear steam supply system and nuclear equipment, services and fuel for high levels of safety and performance. Framatome is a major international player in the nuclear energy market recognized for its innovative solutions and value-added technologies for designing, building, maintaining, and advancing the global nuclear fleet. The company designs, manufactures, and installs components, fuel and instrumentation and control systems for nuclear power plants and offers a full range of reactor services. With 14,000 employees worldwide, every day Framatome’s expertise helps its customers improve the safety and performance of their nuclear plants and achieve their economic and societal goals.

Department: Computational Fluid Dynamics

Contact: Dr. Höhne, ThomasDr. Lucas, Dirk

Requirements

  • Studies in Engineering, Computer Science or comparable
  • Interest in numerical work
  • Good communication skills in both written and spoken English
  • Useful but not required is a knowledge of the following software tools: CFD codes CFX and Fluent, Python, GIT.

Conditions

  • A vibrant research community in an open, diverse, and international work environment.
  • Scientific excellence and extensive professional networking opportunities.
  • Compensation as student researcher (working hours to be determined).
  • Working place will be Dresden and/or Erlangen Germany.

Online application

Please apply online: english / german

Druckversion


Self-organized nanopattern formation on crystalline SiGe surfaces (Id 342)

Master theses / Diploma theses

Foto: AFM images of ion-induced surface patternings ©Copyright: Dr. Denise ErbVarious metals, semiconductors, and oxides form regular nanoscale surface patterns in a complex process of self-assembly under low energy ion irradiation. While the elemental semiconductors Si and Ge have been extensively studied in this respect, there is no such investigation for alloys of Si and Ge. We want to explore which nanoscale pattern morphologies can emerge on SiGe surfaces and how they can be modified via the conditions of ion irradiation. We expect to obtain new insights into the complex process of ion-induced nanopattern formation in technologically relevant materials.
This work comprises the preparation of nanopatterned surfaces by low energy ion irradiation, imaging these surfaces surfaces by atomic force microscopy and electron microscopy, the quantitative analysis of these data, as well as simulating the patterning process based on continuum equations or kinetic MonteCarlo models.
The project provides an introduction to research at a large scale facility (Ion Beam Center IBC) and opportunities for networking with HZDR specialists (f/m/d) on nanoscale surface modification and characterization.

Department: Ion Beam Center

Contact: Dr. Erb, Denise

Requirements

— completed B.Sc. studies or Vordiplom in experimental physics, materials science, or related subject
— good command of German and/or English
— ability to work independently and systematically

Conditions

— place of work: HZDR, location Rossendorf
— project duration: 12 months, flexible starting time

Links:

Online application

Please apply online: english / german

Druckversion


Self-organized nanopattern formation on crystalline surfaces of III-V semiconductors (Id 341)

Master theses / Diploma theses

Foto: AFM images of ion-induced surface patternings ©Copyright: Dr. Denise ErbVarious metals, semiconductors, and oxides form regular nanoscale surface patterns in a complex process of self-assembly under low energy ion irradiation. Depending on the experimental conditions nanopatterns of very different morphologies will form. They can be categorized into either the erosive or diffusive regime – depending on the dominant mass transport processes on the surface. For compound semiconductors the erosive regime has rarely been investigated so far. We want to find out under which conditions the expected nanopattern formation in the diffusive regime takes place. We expect to obtain new insights into the complex process of ion-induced nanopattern formation in technologically relevant materials.
This work comprises the preparation of nanopatterned surfaces by low energy ion irradiation, imaging these surfaces surfaces by atomic force microscopy and electron microscopy, the quantitative analysis of these data, as well as simulating the patterning process based on continuum equations or kinetic MonteCarlo models.
The project provides an introduction to research at a large scale facility (Ion Beam Center IBC) and opportunities for networking with HZDR specialists (f/m/d) on nanoscale surface modification and characterization.

Department: Ion Beam Center

Contact: Dr. Erb, Denise

Requirements

— completed B.Sc. studies or Vordiplom in experimental physics, materials science, or related subject
— good command of German and/or English
— ability to work independently and systematically

Conditions

— place of work: HZDR, location Rossendorf
— project duration: 12 months, flexible starting time

Links:

Online application

Please apply online: english / german

Druckversion


Self-organized nanopattern formation on crystalline GaAs and InAs surfaces (Id 340)

Master theses / Diploma theses

Foto: AFM images of ion-induced surface patternings ©Copyright: Dr. Denise ErbVarious metals, semiconductors, and oxides form regular nanoscale surface patterns in a complex process of self-assembly under low energy ion irradiation. Studies of the elemental semiconductors Si and Ge have shown that the symmetry of their crystalline surface strongly influences the morphology of those nanopatterns. However, only one particular surface orientation has been studied analogously for the compound semiconductors GaAs and InAs. While for these materials, the nanopattern morphology is mainly attributed to their compound character, a significant additional influence of the surface crystal structure is expected. We want to demonstrate this by investigation the ion-induced pattern formation on crystalline GaAs and InAs with various surface orientations. The resulting surface patterns may find application in the bottom-up fabrication of complex nanostructured systems.
This work comprises the preparation of nanopatterned surfaces by low energy ion irradiation, imaging these surfaces by atomic force microscopy and scanning tunnelling microscopy, the quantitative analysis of these data, as well as simulations of the patterning process based on continuum equations or kinetic MonteCarlo models.
The project provides an introduction to research at a large scale facility (Ion Beam Center IBC) and opportunities for networking with HZDR specialists (f/m/d) on nanoscale surface modification and characterization.

Department: Ion Beam Center

Contact: Dr. Erb, Denise

Requirements

— completed B.Sc. studies or Vordiplom in experimental physics, materials science, or related subject
— good command of German and/or English
— ability to work independently and systematically

Conditions

— place of work: HZDR, location Rossendorf
— project duration: 12 months, flexible starting time

Links:

Online application

Please apply online: english / german

Druckversion


Optical properties of Ag nanocube ensembles (Id 339)

Master theses / Diploma theses

Ensembles of nanoscale metallic objects such as Ag nanocubes exhibit particular optical properties, which can be influenced by size, shape and spatial arrangement of these objects. Ion beam based techniques enable the preparation of nanopatterned surfaces, on which Ag nanocubes can be arranged in a regular fashion, as well as the modification of the nanocube shape by ion erosion. Thus the effects of changes in arrangement and shape on the optical properties of the ensemble can be studied.
This work comprises the preparation of nanopatterned surfaces by low energy ion irradiation, the arrangement of Ag nanocubes on such surfaces and their deformation by ion beam erosion, the imaging of theses sample systems by atomic force microscopy and scanning electron microscopy, the measurement of optical properties by cathodoluminescence and ellipsometry, and the quantitative analysis of the obtained data.
The project provides an introduction to research at a large scale facility (IBC) and opportunities for networking with HZDR specialists (f/m/d) on nanoscale surface modification and characterization.

Department: Ion Beam Center

Contact: Dr. Erb, Denise

Requirements

— completed B.Sc. studies or Vordiplom in experimental physics, materials science, or related subject
— good command of German and/or English
— ability to work independently and systematically

Conditions

— place of work: HZDR, location Rossendorf
— project duration: 12 months, flexible starting time

Links:

Online application

Please apply online: english / german

Druckversion


Entwicklung von Radiotracern zur Bildgebung von Tumorerkrankungen (Id 338)

Bachelor theses / Master theses / Diploma theses / Compulsory internship

Foto: macropa-Chelator mit schematischer möglicher Anwendung zur Tumordiagnostik ©Copyright: FWPDie gezielte Behandlung von Tumorerkrankungen erlangt zunehmend an Bedeutung. Die eng mit der radiopharmazeutischen Forschung verknüpfte Nuklearmedizin ist auf die Anwendung radiomarkierter Verbindungen (Radiopharmaka) für die Tumordiagnostik und -therapie spezialisiert. Dabei wird ein bestimmtes Radionuklid entweder direkt am Molekül oder stabil in einem Komplexbildner gebunden und an ein biologisch aktives Molekül geknüpft (Peptid, Antikörper…). Das Radiopharmakon bindet dann spezifisch an bestimmten Zellen (z. B. Knochenzellen, Tumorzellen…). Während zur diagnostischen Bildgebung Gamma- und Positronenemitter eingesetzt werden, kommen für therapeutische Anwendungen ausschließlich Betaemitter und Alphaemitter zum Einsatz. Für den Alphaemitter Actinium-225 steht, sofern der Chelator macropa verwendet wird, gegenwärtig kein geeignetes diagnostisches Radionuklid zur Verfügung.

In diesem Forschungsprojekt sollen Konjugate hergestellt werden, welche mit einem bildgebenden Radionuklid (Fluor-18, Iod-123, Lanthan-133) radiomarkiert werden können. Die Konjugate sollen sich gleichermaßen für die stabile Bindung von Actinium-225, welches therapeutisch angewendet wird, eignen. Nach erfolgreicher Synthese und Charakterisierung von definierten Zielverbindungen sollen diese radiomarkiert, und die Stabilität der radiomarkierten Substanzen im biologischen System beurteilt werden. Die vielversprechendsten Konjugate sollen anschließend auf zellulärer Ebene und schlussendlich präklinisch in vivo evaluiert werden.

Department: Radionuclide Theragnostics

Contact: Dr. Reissig, FalcoDr. habil. Mamat, Constantin

Requirements

  • Studium der Chemie oder eines artverwandten Studiengangs
  • Erfahrungen im Bereich der Synthesechemie und Analytik
  • Interesse an der wissenschaftlichen Arbeit in einem interdisziplinären Team
  • Bereitschaft zum Umgang mit Radioaktivität

Conditions

  • Beginn ist nach Absprache ab sofort möglich
  • Praktikumsdauer mindestens 8 Wochen
  • Vergütung nach internen HZDR-Regelungen

Online application

Please apply online: english / german

Druckversion


Development of an automation system for materials science simulations (Id 337)

Master theses / Diploma theses / Student Assistant

Foto: MALA ©Copyright: Dr. Attila CangiThe Center for Advanced Systems Understanding (CASUS) is a German-Polish research center for data-intensive digital systems research. CASUS was founded in 2019 in Görlitz and conducts digital interdisciplinary systems research in various fields such as earth systems research, systems biology, and materials science.

We are looking for motivated, creative, and curious students to help us automate generating simulation data for machine-learning projects in the field of matter under extreme conditions.

The scope of your job
The Department Matter under Extreme Conditions at CASUS investigates how materials properties can be predicted based on machine-learning algorithms. This requires large amounts of simulation data. Generating this data requires a large degree of user input. In this project, you will investigate if and how existing tools for automation in the field of materials science can be integrated into computational workflows to drastically speed up data acquisition. This involves improving the in-house software and combining it with larger software suites. Besides ease-of-use, another focus of these workflows should be reproducibility. No prior knowledge of materials science simulation is required!

Tasks for this thesis might involve:

  • Literature research on existing solutions for the automation of simulations
  • Development and improvement of the existing Python workflows
  • Integration of existing workflows in larger software suites
  • Development of a graphical user interface, potentially web based

Institute: CASUS

Contact: Fiedler, LenzDr. Cangi, Attila

Requirements

  • Bachelor in computer science or related field
  • Experience with Python, JavaScript or Java
  • Ability to work in a team
  • Good language skills in English
  • Experience with software automation or database systems (optional)
  • Experience with Git or SVN (optional)
  • Experience with scientific software development (optional)

Conditions

  • A vibrant research community in an open, diverse, and international work environment
  • Scientific excellence and extensive professional networking opportunities
  • Compensation as student researcher (optional, working hours to be determined)

Online application

Please apply online: english / german

Druckversion


Motion tracking of autonomous sensor particles in industrial vessels (Id 335)

Master theses / Diploma theses / Compulsory internship

Foto: AutoSens_StirredReactor ©Copyright: fwdf (Mailgruppe)Data acquisition in large industrial vessels such as biogas fermenters or wastewater treatment plants is limited to local measurement points due to limited access to the vessel and the non-transparency of the fluid. To optimize these kinds of plants, the three-dimensional flow field and the spatial distribution of fluid properties such as temperature and electrical conductivity inside the vessel must be known. This can be achieved by the autonomous flow-following sensor particles developed by the HZDR. Equipped with a pressure sensor, an accelerometer, two gyroscopes and a magnetometer, the sensor particle can track the movement inside the vessels and derive the flow field from that. Additionally, the sensor particle gets position information by an ultra-wide-band based localization module (like GPS) as soon as it is on the fluid surface. The motion of the sensor particle is currently tracked with an error-state Kalman filter and yields a reliable tracking of the velocity and position, respectively. However, the tracking time is limited by the propagation of uncertainties of the inertial sensors through the filter. The objective of this master thesis is to extend this tracking time by the use of more advanced tracking algorithms like particle filter or other types of Kalman filters. This includes the following tasks:

  • Literature review of advanced filters for motion tracking
  • Theoretical comparison and implementing the most promising algorithm in Python
  • Verification and performance analysis based on experimental data

Department: Experimental Thermal Fluid Dynamics

Contact: Buntkiel, LukasDr. Reinecke, Sebastian

Requirements

Studies in the area of electrical, mechatronic, mechanical engineering or similar

  • Basics of measurement uncertainty, digital signal processing
  • Data analysis in Python
  • Independent and structured way of working

Conditions

  • Start possible at any time
  • Duration according to the respective study regulations

Links:

Online application

Please apply online: english / german

Druckversion


Experimental investigation of influence of interfacial viscoelasticity on the dripping to jetting transition (Id 333)

School practical training / Student practical training / Bachelor theses / Master theses / Compulsory internship

Foto: Capillary with jetting liquid-liquid interface ©Copyright: Milad EftekhariLiquid jets are unstable and eventually form droplets to minimize the surface energy with the surrounding fluid. The transition from dripping to jetting and dynamics of the droplet pinch-off have been studied extensively for various systems, from pure Newtonian fluids to complex non-Newtonian liquids. The jetting process has received significant attention as it is a critical step in various three-dimensional (3D) printing techniques such as dropwise additive manufacturing and the direct ink writing method. In most of the applications surface active materials such as surfactants, nanoparticles, and polymers exist in the systems. The presence of surface-active materials reduces the liquid-fluid surface energies and in some cases generates a viscoelastic layer at the interface.
In this research, we aim to study the influence of interfacial viscoelasticity on the dripping to jetting transition. The study is conducted by the injection of an aqueous phase (nanoparticle dispersions) into an oil phase that contains surfactants over a wide range of flow rates. We tune the magnitude of interfacial viscoelasticity by changing the concentration of surfactants and nanoparticles.
Research question:
Does the dripping to jetting transition (critical flow rate) linearly increase by increasing the interfacial viscoelasticity?

Experiments:

1. Measurements of interfacial tension and surface elasticity for a range of particle and surfactant concentration using Profile analysis tensiometry, and Langmuir trough.
2. Dripping to jetting experiments for the selected systems using high-speed cameras and in-house setups.

Department: Transport processes at interfaces

Contact: Eftekhari, MiladDr. Schwarzenberger, Karin

Requirements

  • Field of study: chemical engineering, process engineering, fluid mechanics, or similar focus in chemistry or physics
  • Experience with laboratory work and imaging measurement techniques is beneficial

Conditions

  • Working in an international team
  • Duration: at least 6 months
  • Location: Dresden-Rossendorf

Online application

Please apply online: english / german

Druckversion


Techno-ökonomische Bewertung eines hybriden Energiespeichersystems basierend auf einem batteriegestützten Power-to-Methanol Prozess und erneuerbaren Energien (Id 331)

Master theses / Diploma theses

Das Institut für Fluiddynamik des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) beschäftigt sich unter anderem mit Fragen der Modellbildung und Simulation von verfahrenstechnisch eng gekoppelten Power-to-X-Systemen bestehend aus den Teilprozessen Hochtemperaturelektrolyse (Solid Oxide Electrolyzer Cells) und heterogen katalysierten Syntheseprozessen von synthetischen Energieträgern der Zukunft (Methanol, Methan, usw.) unter stofflicher Nutzung anthropogener Kohlenstoffdioxidemissionen und regenerativ produziertem Strom. Auf Basis eines bereits existierenden Modells eines Power-to-Methanol Prozesses und eines ebenfalls vorliegenden techno-ökonomischen Teilmodells (TEA) soll die Wirtschaftlichkeit der dezentralen Produktion von Methanol mit Hilfe von erneuerbarem Strom in Kopplung mit großen Batteriespeichern untersucht werden.
Zur Realisierung dieser Aufgabe bietet die Abteilung Experimentelle Thermofluiddynamik für Studenten der unten genannten Studiengänge studienbegleitende Tätigkeiten zur beschriebenen Thematik an. Die Voraussetzung ist die Anfertigung einer Diplom- oder Masterarbeit.

Folgende Teilarbeiten sind durchzuführen:

  • Literaturrecherche zu hybriden Energiespeichersystemen basierend auf Power-to-Methanol Prozessen und Batteriespeichern hinsichtlich Prozessdesign und Wirtschaftlichkeit,
  • Literaturrecherche zur mathematisch-physikalischen Modellierung von Batteriespeichern und Erstellung eines einfachen Batteriespeichermodells mittels Matlab,
  • Ermittlung der ökonomischen Randbedingungen für großskalige Batteriespeicher auf Basis von Literaturdaten,
  • Untersuchung der Wirtschaftlichkeit des hybriden Energiespeichersystems für ein vorgegebenes Anschlussszenario für den Betrieb mit erneuerbaren Energiequellen.

Department: Experimental Thermal Fluid Dynamics

Contact: Fogel, Stefan

Requirements

  • Student (w/m/d) der Studiengänge Wirtschaftsingenieurwesen, Chemieingenieurwesen, Verfahrenstechnik, Energietechnik, Maschinenbau oder ähnlicher fachlicher Ausrichtung,
  • Grundkenntnisse in Matlab wünschenswert,
  • Sorgfältige, kreative und selbstständige Arbeitsweise,
  • Gute Sprachfertigkeiten (oral/schriftlich) in englischer und deutscher Sprache,
  • Freude an der wissenschaftlichen und eigenständigen Arbeit.

Conditions

Bearbeitungszeit: 6 Monate (Beginn ab sofort)

Online application

Please apply online: english / german

Druckversion


Student assistant at the DeltaX School Lab (Id 308)

Student Assistant / Research Assistant

Foto: Schülerlabor DeltaX - Experimentiertage Magnetismus ©Copyright: André WirsigThe DeltaX student laboratory makes research at the Helmholtz-Zentrum Dresden-Rossendorf an experience for students. We are looking for tutors who enjoy teaching science, research and technology and who would like to support students conducting their experiments. Apply as a student assistant in the DeltaX school laboratory and become part of a young and open-minded team.

Department: School Lab DeltaX

Contact: Dr. Streller, MatthiasGneist, Nadja

Requirements

  • Study of a scientific subject
  • Remaining study duration of at least 2 semesters
  • Pleasure in teaching science and research- Good to very good grades
  • Very good knowledge of German (B2 / C1 level)

Conditions

  • 5 – 10 h / week on whole weekdays
  • Start of hiring according to agreement

Links:

Online application

Please apply online: english / german

Druckversion


CFD simulation of gas-liquid flow in tray columns (Id 304)

Master theses / Diploma theses / Compulsory internship

Foto: Eye-Catcher ColTray-CFD ©Copyright: Dr. Philipp WiedemannTray columns are used for thermal separation of multicomponent mixtures in the chemical industry. Owing to increased energy supply from renewable sources a more flexible operation of such apparatuses is already demanded. However, enlarged over- and underload modes are challenging with respect to design. Basically, computational fluid dynamics provide a powerful support by predicting the complex two-phase flow on the tray and its application is hence investigated in a current research project.
For that purpose, a hybrid multiphase flow model was adapted for the present simulation task by implementing local mass and momentum sources to mimic the gas inlets from the tray into the froth zone. Additionally, a pre-processing tool was developed that allows for automatic generation of the computational domain and adjustment of boundary conditions.
Within the frame of a current research project we offer a student internship position for applying the developed multi-phase CFD model. The candidate needs to perform simulations and to evaluate the results by comparison with available experimental data. Special focus is put on the influence of different tray designs and operating conditions.

Department: Experimental Thermal Fluid Dynamics

Contact: Dr. Wiedemann, Philipp

Requirements

  • studies in chemical/process/energy/mechanical/computational engineering
  • substantiated knowledge in the field of CFD, preferably OpenFOAM
  • creativity and problem-solving skills
  • good written and oral communication skills in English and German

Conditions

  • start: from Oct. 2022
  • working in a multi-disciplinary team
  • remuneration according to HZDR internal regulations

Links:

Online application

Please apply online: english / german

Druckversion


Organisch-chemische Synthese neuer Radioliganden für die Diagnostik und Therapie von Krebserkrankungen (Id 295)

Student practical training / Master theses / Diploma theses

Wir beschäftigen uns mit der Entwicklung von PET-Radiotracern, die Rezeptoren im Tumormikromilieu (TME = tumor microenvironment) für die Diagnostik und Therapie von Krebs sichtbar machen. Dazu werden geeignete tumoraffine Leitstrukturen identifiziert (niedermolekulare organische Moleküle, Peptide und Peptidomimetika), synthetisiert und mit einem geeigneten Radionuklid kovalent (z. B. Fluor-18, Iod-123) oder über einen Chelator (z. B. Gallium-68, Lutetium-177) markiert. Diese Radioliganden werden in vitro an Tumorzelllinien und in vivo im Tiermodell hinsichtlich einer Anwendung in der Nuklearmedizin getestet. Langfristiges Ziel ist die Translation der entwickelten Radiotracer in die Klinik als Diagnosewerkzeug (PET/CT) oder nach Markierung mit einem Beta- oder Alphastrahler für die Endoradiotherapie von Tumorerkrankungen.
Im Rahmen eines Studentenpraktikums oder einer Abschlussarbeit (Bachelor/Master/Diplom) sollen organische Wirkstoffmoleküle synthetisiert und für eine anschließende radiochemische Markierung modifiziert werden. Die neuen Radioliganden werden dann biologisch in vitro und in vivo untersucht.

Department: Translational TME Ligands

Contact: Dr. Stadlbauer, Sven

Requirements

  • Studium der Chemie mit abgeschlossenem Bachelor
  • Gute Noten in organischer Synthesechemie
  • Fähigkeit sich in ein interdisziplinäres Wissenschaftler-Team einzugliedern
  • Bereitschaft zum Umgang mit Radioaktivität
  • Gute Kenntnisse der deutschen und englischen Sprache

Conditions

  • Beginn nach Absprache jederzeit möglich
  • Praktikumsdauer mindestens 8 Wochen, mit möglichst täglicher Anwesenheit (keine wiss. Hilfskräfte)
  • Vergütung erfolgt nach HDZR-Richtlinien

Links:

Online application

Please apply online: english / german

Druckversion


Materialien für Solarkraftwerke (Id 241)

Bachelor theses / Master theses / Diploma theses

Foto: solarthermisches Turmkraftwerk ©Copyright: @AbengoaTurmkraftwerke stellen die neueste Generation von Anlagen zur solarthermischen Elektroenergieerzeugung dar. Extrem konzentriertes Sonnenlicht wird dabei auf einen zentralen Absorber gerichtet, der die Wärme auf eine Wärmeträgerflüssigkeit überträgt (s. Foto). Zur Erhöhung des Wirkungsgrades von Turmkraftwerken soll die Arbeitstemperatur von derzeit maximal 550°C deutlich erhöht werden. Dafür sollen werkstoffwissenschaftliche Lösungen weiter verfolgt werden, die im Rahmen eines EU-RISE-Projektes entwickelt wurden.

Als Themen für Graduierungsarbeit werden

i) die Optimierung von optischen und elektrischen Schichteigenschaften
ii) die Verbesserung der Schichthaftung auf Hochleistungslegierungen und
iii) die Komplettierung eines neuen Schichtsystems angeboten.

Zur Charakterisierung der untersuchten Materialien stehen modernste in situ und ex situ Analysemethoden zur Verfügung.

Department: Nanocomposite Materials

Contact: Dr. Krause, Matthias

Requirements

1. Studium der Werkstoffwissenschaften, Physik oder Chemie mit überdurchschnittlichen Leistungen (Notendurchschnitt ≤ 2.0)
2. Interesse und Freude an experimenteller wissenschaftlicher Arbeit
3. Grundkenntnisse in Programmierung und sicherer Umgang mit Büro- und wissenschaftlicher Software
4. Fachkundige Englischsprachkenntnisse

Conditions

internationale Forschungsumgebung, ortsübliche Aufwandsentschädigung

Online application

Please apply online: english / german

Leave a Reply

Your email address will not be published.